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REPORT

Genomewide Weighted Hypothesis Testing in Family-Based
Association Studies, with an Application to a 100K Scan
Iuliana Ionita-Laza, Matthew B. McQueen, Nan M. Laird, and Christoph Lange

For genomewide association (GWA) studies in family-based designs, we propose a novel two-stage strategy that weighs
the association P values with the use of independently estimated weights. The association information contained in the
family sample is partitioned into two orthogonal components—namely, the between-family information and the within-
family information. The between-family component is used in the first (i.e., screening) stage to obtain a relative ranking
of all the markers. The within-family component is used in the second (i.e., testing) stage in the framework of the standard
family-based association test, and the resulting P values are weighted using the estimated marker ranking from the
screening step. The approach is appealing, in that it ensures that all the markers are tested in the testing step and, at
the same time, also uses information from the screening step. Through simulation studies, we show that testing all the
markers is more powerful than testing only the most promising ones from the screening step, which was the method
suggested by Van Steen et al. A comparison with a population-based approach shows that the approach achieves com-
parable power. In the presence of a reasonable level of population stratification, our approach is only slightly affected
in terms of power and, since it is a family-based method, is completely robust to spurious effects. An application to a
100K scan in the Framingham Heart Study illustrates the practical advantages of our approach. The proposed method
is of general applicability; it extends to any setting in which prior, independent ranking of hypotheses is available.
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Genomewide association (GWA) studies are motivated by
the promise of a better understanding of the genetic ar-
chitecture of complex diseases. So far, successful studies
for both relatively rare diseases and complex phenotypes
have been conducted. For age-related macular degenera-
tion (AMD)1 and inflammatory bowel disease,2 loci with
large genetic effects were detected—for example, an odds
ratio of 7.4 for AMD.1 In the field of complex diseases and
phenotypes, GWA studies have identified loci for cardiac
repolarization (QT interval),3 type 2 diabetes,4 and BMI.5

The association between BMI and the INSIG2 SNP was
detected with a recently developed two-stage algorithm6

for family-based association studies. This two-step algo-
rithm applies the two steps—the screening step and the
testing step—to the same data set and thereby can estab-
lish genomewide significance within one study, minimiz-
ing the potential impact of study heterogeneity. In this
approach, the association information in the family sam-
ple is split into the between-family component and the
within-family component. The between-family compo-
nent is used in the screening step to estimate a relative
ranking of the markers. The most promising markers after
the screening step are then tested in the testing step.

The two criticisms of the approach in the work of Van
Steen et al.6 have been that the screening step can be sus-
ceptible to population admixture and stratification and
that only a very small number of SNPs (the top 10–20
ranked markers in the screening step) are formally tested

for association. Here, we abandon this “top R” approach
and allow all genotyped markers to be tested for associ-
ation in the second step of the testing strategy. Although
the top R approach was originally implemented to min-
imize the multiple-testing problem and to thereby in-
crease the statistical power of the testing strategy, we show
that testing all markers in the second stage can be more
powerful and can achieve power levels that are in the same
range as the power levels of population-based studies.
When there is population admixture and stratification, we
show that the new approach is robust to spurious effects
and that its power is only slightly affected by the degree
of stratification. A genomewide scan for height (MIM
606255) in a 100K scan in the Framingham Heart Study
(FHS) illustrates the practical advantages of the new
approach.

A new algorithm for screening and testing with the use of
the same data set.—In the first step of the algorithm—the
screening step—we compute, for all genotyped SNPs, the
conditional power of the family-based association test
(FBAT) statistic on the basis of the estimates obtained from
the conditional mean model.7 Since these power estimates
are statistically independent of the FBAT statistics that will
be computed subsequently, the overall significance level
of the algorithm does not need to be adjusted for the
screening step.

In the second step of the algorithm—the testing step—
the new method tests all the genotyped markers, not just
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the 10 or 20 SNPs with the highest power ranking tested
in the top R approach.6 However, unlike a Bonferroni or
false-discovery–rate (FDR) approach, the new method in-
corporates the extra information obtained in the screen-
ing step—that is, the conditional power estimate of the
FBAT statistic—so that markers that have a high power
ranking are tested at a significance level that is far less
stringent than that used in a standard Bonferroni adjust-
ment. This adjustment is made at the expense of the
lower-ranked markers, which are tested using more-strin-
gent thresholds. The adjustment follows the intuition that
low conditional power estimates imply small genetic ef-
fect sizes and/or low allele frequencies, which makes such
SNPs less desirable choices for the investment of relatively
large parts of the significance level. For SNPs with low
power estimates, the evidence against the null hypothesis
has to be extremely strong to overthrow the prior evidence
against association from the screening step. A similar idea
of individually weighting the significance level for each
SNP has been proposed by Roeder et al.,8 whereby one
uses information from a linkage study to weigh the P
values of an association study. More recently, Wasser-
man and Roeder9 presented a more general method for
weighted hypothesis testing that uses either externally or
internally estimated weights. Our method follows a sim-
ilar idea but differs in that we make use of only the marker
ranking after the screening step and not the actual power
estimates.

Our new procedure ensures that all markers are tested
and that, moreover, the overall error is maintained at the
desired level. Our approach is applicable either to a fam-
ilywise error rate or to an FDR. We outline here the ap-
proach for the familywise error rate, but the modification
for the FDR is straightforward.

More formally, let us assume that m is the total number
of markers. After the screening step, all genotyped SNPs
are ranked on the basis of their conditional power esti-
mates and are indexed by , where the indexi p 1,2,3,…m
i denotes the power ranking of the SNPs in descending
order. In the second step of the algorithm, we test marker
i, using the significance cutoff , wherew a w � w � … �i 1 2

, , and a is the genomewide significance levelw p 1 w � 0m i

desired—for example, .05. Since the sum of all weights is
1—that is, —the proposed testingw � w � … � w p 11 2 m

strategy will maintain an overall significance level of a.
The power of the proposed algorithm will depend on the
choice of the weight parameters .wi

There are many possible ways to select the weights. Both
the top R and the standard approach based on Bonferroni-
adjusted P values are special cases of the testing strategy.
The Bonferroni correction does not incorporate the con-
ditional power estimates and assigns equal weights to all
markers, for all i. In the top R algorithm, thew p 1/mi

information from the screening step allows us to favor
some markers over others by giving higher weight to
markers on the basis of their conditional power esti-
mates—namely, and .w p …w p 1/R w p …w p 01 R R�1 m

Here, we develop a weighting scheme that combines
the advantages of both the Bonferroni procedure (e.g.,
testing all markers) and the original top R approach (e.g.,
incorporating the additional information about the as-
sociation at a population level into the testing strategy).
To derive optimal weights , it is important to keep inwi

mind that, in a GWA study, we are testing a large number
of markers. The majority of markers will be noise, and
only a few of them are expected to be associated with a
phenotype. Consequently, for robustness purposes, we as-
sume that the marker set can be partitioned into a rela-
tively small number of partitions, such that markers that
belong to the same partition receive the same weight.

Formally, let K be the number of partitions and beki

the size of the ith partition. Let be the weight assignediw
to this partition. Then, and 1k � k � … � k p m k w �1 2 K 1

. Both the Bonferroni procedure and2 Kk w � … � k w p 12 K

the top R procedure share this “sparse weights” property.
The Bonferroni approach can be described by ,K p 1

, and , whereas the top R approach can1k p m w p 1/m1

be described by , , and .1 2K p 2 w p 1/R w p 0
For the weighting scheme that we propose here, the

number of partitions K will be small as well ( –20).K ≈ 10
When the ranking of the markers after the screening step
is taken into account, the first partitions will be small and
will contain the most promising markers, whereas the lat-
ter partitions containing the less promising markers will
be bigger and bigger, reflecting our greater uncertainty
about their association with disease. Formally, the sizes
of the partitions ( ) should increase, and the weightski

( ) should correspondingly decrease. Although there areiw
many possible weighting functions, the use of exponential
weights has theoretical appeal (more details can be found
in appendix A).

The exponential weighting scheme.—We denote the size
of the first partition by . Optimal choices of the firstk1

partition size, , are derived by simulation studies de-k1

scribed below, both in the absence and presence of ad-
mixture and stratification. Then, on the basis of , thek1

sizes of the consecutive partitions are defined recursively.
The size of the second partition is given by , thatk p 2k2 1

of the third by , etc. This will result in an expo-k p 2k3 2

nential distribution for the partition sizes. As the sizes of
the partitions increase, the weights ( ) for the adjustediw
significance levels will decrease exponentially:

1 i1 w w1 2 (i�1)w p , w p , … , w p .
2k 4 41

With these partition sizes and weights, we have

1 1 11 2 Kk w � k w � … � k w p � � … ≈ 1 .1 2 K 2 K2 2 2

We discuss the theoretical motivation of these choices of
weights and partition sizes in appendix A.

For example, table 1 shows the significance cutoffs (i.e.,
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Table 1. Exponential
Weighting with k p 51

Rank (�) after
Screening Step awai

5 5.00#10�3

15 1.25b#10�3

35 3.12#10�4

75 7.81#10�5

155 1.95#10�5

315 4.88#10�6

635 1.22#10�6

1,275 3.05c#10�7

2,555 7.63#10�8

5,115 1.90#10�8

10,235 4.77#10�9

20,475 1.19#10�9

40,955 2.98#10�10

81,915 7.45#10�11

100,000 1.86#10�11

a The nominal P value is com-
pared against this threshold.

b Less stringent than the top
20 method.

c More stringent than the
Bonferroni correction.

), dependent on the conditional power ranking, thatw ai
result when a 100K scan is analyzed and the first parti-
tion is assumed to be of size 5 ( ). Taking ink p 5 R p 201

the top R approach results in a threshold of .05/20 p
. The Bonferroni correction gives a threshold of.0025

. Although the proposed cutoffs�7.05/100,000 p 5 # 10
are of the same magnitude as that of the top R approach
for the 15 SNPs with the highest conditional power rank-
ings, the proposed test is more conservative than the
Bonferroni correction only for SNPs that are not ranked
among the 1,275 SNPs with the highest conditional
power.

Using simulation studies, we assessed the power and
robustness of the proposed testing strategy under various
conditions and also compared it with population-based
studies with identical numbers of probands. In summary,
our simulation results suggest that the new testing strategy
outperforms the top R and the Bonferroni-adjustment
methods and achieves power levels that are comparable
to population-based designs. In the presence of popula-
tion admixture and confounding, the proposed testing
strategy has the advantage of being totally robust to spu-
rious effects.

Power comparisons in the absence of population stratifica-
tion.—With simulation studies, we compare the proposed
testing strategy with the top R approach, Bonferroni ad-
justment, and population-based analysis. We simulate
complete trios, with genotypes at markers.m p 100,000
On the basis of the selected allele frequencies, the geno-
types of each parent are randomly drawn from a binomial
distribution for each marker. The offspring genotype is
generated by simulated Mendelian transmission from the
parents to the offspring. The first marker is assumed to be

the disease-susceptibility locus (DSL) with the disease-al-
lele frequency in the range of 0.1–0.5 and heritability in
the range of 0.01–0.05. Using an additive mode of inher-
itance, we simulate a normally distributed quantitative
trait with a locus-specific heritability of h—that is, the
percentage of phenotypic variation explained by the DSL
SNP.6 The allele frequencies for the random markers are
uniformly chosen from [0.1, 0.5].

We report the results for the Bonferroni approach (using
the FBAT statistic), the “top 20” approach (top R method
with ), and the proposed approach, usingR p 20 k p 51

for the size of the first partition. (Note that we compared
power results for several values of —that is, {5, 10, 100}—k1

and provided the most power.) By regressing thek p 51

quantitative trait on the offspring genotype, we also es-
timate the power of the corresponding population-based
test for the same number of probands.

Figure 1 shows the empirical power estimates based on
1,000 replicates in our simulation study, for sample sizes
of 700, 1,000, and 1,500 trios. The simulation results sug-
gest that the proposed testing algorithm consistently out-
performs both the top R algorithm and the approach based
on Bonferroni adjustment. Furthermore, it is noteworthy
that the proposed testing algorithm achieves power levels
that are very close to those of a population-based analysis
with the same number of probands. Since we did not im-
pose any ascertainment condition for the phenotype in
the simulation study, the simulation conditions are ideal
for the population-based analysis. In the presence of as-
certainment, further work is necessary to evaluate the dif-
ferent approaches.

Power comparisons in the presence of population stratifica-
tion.—To study the power and the robustness of the dif-
ferent approaches in the presence of stratification, we
simulate a study population that consists of two distinct
subpopulations that differ in terms of both allele frequen-
cies and phenotypic means.

In the simulation study, the trios are assigned to each
subpopulation with equal probabilities. The allele fre-
quencies for the random markers for population 1 and
population 2 are generated using the Balding-Nichols10

model, as follows. For each marker, an ancestral popula-
tion–allele frequency p is drawn from a uniform distri-
bution between 0.1 and 0.9. The allele frequencies for
each of the two subpopulations are drawn independently
from a beta-distribution with parameters andp(1 � F )/FST ST

( is Wright’s measure of population(1 � p)(1 � F )/F FST ST ST

subdivision).
In addition to differences in allele frequencies at each

marker locus, we also simulate different phenotypic means
in the two subpopulations, which, in combination with
the allele-frequency differences, will result in spurious as-
sociations at a population level. Namely, for the random
markers in subpopulation 1, we generate the offspring
phenotype by drawing from a normal distribution with
mean 0 and variance 1. For the families from subpopu-
lation 2, an offset value (d) is added to the mean of the
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Figure 1. Power versus heritability for three sample sizes when there is no population stratification: 700, 1,000, and 1,500 trios.
FBAT is the simple Bonferroni method that uses the FBAT statistic, top 20 is the top R method with , ExpWeights is the proposedR p 20
method that uses the size of the first partition , and PopTest is the standard population-based test that uses Bonferroni adjustment.k p 51

Minor-allele frequency at the DSL is 0.3. Other allele frequencies 0.1–0.5 resulted in similar trends and are therefore not shown.

Figure 2. Power versus FST for three sample sizes with population stratification: 700, 1,000, and 1,500 trios. FBAT is the simple
Bonferroni method that uses the FBAT statistic, top 20 is the top R method with , ExpWeights is the proposed method thatR p 20
uses the size of the first partition , and Eigenstrat is the population-based test that uses Eigenstrat adjustment.k p 51

phenotype distribution. The signal at the DSL is distorted
in a similar way.

To examine the impact of this type of confounding on
the various approaches, we repeat the simulation studies,
using the same sample sizes as in the previous simulation
studies. The parameters used in the simulation are as fol-
lows. The ancestral-allele frequency at the DSL is fixed at
0.3, and the heritability is 0.05 for the smaller sample sizes
of 700 and 1,000 trios and 0.03 for the larger sample size
of 1,500 trios. The degree of stratification at the markers

is reported on the basis of Wright’s F p {0.001, 0.005,ST

. Values of on the order of 0.01 are typical of the0.01} FST

differentiation between closely related populations.11,12

The offset parameter (d) is fixed at 0.2.
For a realistic comparison between the family-based

methods and the population-based approach, we have to
adjust the population-based analysis for admixture and
stratification. Various adjustment approaches are avail-
able, including genomic-control methods13 and structured
association methods.11,14,15 We report results for the pop-
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Figure 3. Profile plots of the mean height (�SE) across six exams within the rs10514619 genotype group. The minor-allele frequency
at the SNP is 0.03.

ulation-based analyses that are corrected using the Eigen-
strat approach,14 which uses the correlation between the
proband’s genotypes to infer continuous axes of genetic
variation.

A summary of the results is shown in figure 2. In terms
of power, the Eigenstrat-adjusted population-based anal-
ysis achieves the highest power levels, followed by the
proposed testing strategy, whose power levels are only
slightly smaller. Similar to the case of no confounding,
the proposed testing strategy outperforms the top R ap-
proach and the Bonferroni approach. At the same time,
the results of our simulation study show that the power
of all three family-based approaches is only slightly influ-
enced by the increasing degrees of admixture (fig. 2). The
negligible dependence of the power estimates on the de-
gree of admixture can be explained by the fact that the
ranking of the disease locus is only slightly affected by
the increase in confounding and also by the fact that our
weighting scheme is robust to such small alterations in
the ranking.

FHS data analysis.—To illustrate the practical relevance
of the proposed testing strategy, we applied the approach
to a 100K scan, using the National Heart, Lung, and Blood
Institute (NHLBI) FHS data set. The participants in the FHS
are a longitudinal, community-based sample free of any
selection criteria for a particular trait or disease and have
been followed for 124 years. We used a subsample of the
FHS (FHS offspring cohort) consisting of 923 participants
who were genotyped for 116,204 SNPs and have pheno-
typic measures from up to six exam visits. Using this data
set, we performed a GWA analysis for stature (i.e., height
in inches).

In general, we closely followed the methodology pre-
sented in the work of Herbert et al.5 while extending the
top R algorithm to accommodate the improved weighting
scheme presented here. For the GWA analysis of stature,

the details of the procedure are as follows: (1) Using the
between-family information, we combined the longitu-
dinal measures of height into one univariate phenotype,
using the FBAT–principal components (PC) approach,
which maximizes the heritability of the aggregate phe-
notype.16 (2) We then derived conditional power estimates
for each SNP-phenotype combination. (3) Each SNP-phe-
notype combination was then ranked on the basis of its
conditional power, and the proposed weighting scheme
( ) was applied to each of the within-family (i.e.,k p 51

FBAT) tests generated. Since stature is predicted by age and
sex, we used these two parameters as covariates in the
analysis.

We identified SNP rs10514619 with a nominal FBAT-
PC P value of .0047; this SNP was ranked second (accord-
ing to conditional power) in the screening step. Since

(table 1), this SNP is genomewide significant.0047 ! .005
at the .05 level with use of the proposed weighting ap-
proach, but it fails to reach significance with use of the
top R method (with ), since . ThisR p 20 .0047 1 .05/20
SNP maps to 16q24.1 within the protein-coding locus
LOC729979 found only in libraries from testis (National
Center for Biotechnology Information). Interestingly, a
sex-specific subgroup analysis suggests that males are pri-
marily responsible for the observed association signal (see
fig. 3).

Discussion.—In this report, we propose a powerful two-
stage approach in family-based association studies. Our
approach is appealing, in that it allows testing of all the
genotyped markers but also uses the available extra in-
formation from the screening step. The proposed con-
cept is of general applicability; it extends to any setting
in which prior, independent ranking of hypotheses is
available.

In the absence of admixture and stratification, our sim-
ulation studies show that our approach achieves increases
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in power over both the standard family-based approach
and the top R procedure and has almost the same power
levels as population-based methods with the same number
of probands. Moreover, in the presence of a reasonable
level of stratification likely to be seen in practice, the
power of our approach is only slightly affected by the
degree of confounding. Since it is a family-based test, our
approach also maintains complete robustness to spurious
effects.

Genetic association findings with complex phenotypes
are known to be difficult to replicate and, consequently,
require time-consuming and costly efforts. However, the
main purpose of GWA studies is the discovery of new as-
sociations, which we hope will foster the identification of
novel disease genes. To accelerate this process, there are
two key requirements for the statistical analysis: (1) op-
timal use of the total association information in the sam-
ple, to avoid missing an important genetic association,
and (2) minimal number of false-positive results, to avoid
unnecessary, expensive, and time-consuming follow-up
efforts. The testing strategy proposed here provides both.
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Appendix A
We can get more insight into the proposed method by

looking at the distribution of the DSL rank after the screen-
ing step as a function of the true underlying effect and
the number of markers tested.

In the conditional mean model, the effect size for
marker k is estimated using

Y p a # E(X Fparental genotypes) ,k k

where Y represents the offspring’s coded phenotype, and
denotes the offspring’s coded genotype at locus k. LetXk

be the estimated effect size.âk

We can now compute . (To keepP(DSL is ranked kth)
the computations simple, we assume that the m markers
are all independent.)

P(DSL is ranked kth)

ˆ ˆp P(k � 1 markers have a 1 atrue

ˆ ˆand m � k markers have a ! a )true

k�1 m

m�1 ˆ ˆ ˆ ˆp P(a 1 a ) P(a ! a ) , (A1)� �i true i truek�1 ip1 ipk�1

where is the estimated effect size of the DSL.âtrue

Lange and Laird17 showed that

1ˆVar (a ) p ,i np (3p � 1)i i

where is the allele frequency of the ith ranked marker.pi

For a large number of trios n and, for the sake of simplicity,
with the assumption that all markers have equal frequen-
cies p,

2ˆ ˆa � a ∼ N �a , .i true true[ ]np(3p � 1)

Hence, equation (A1) can be rewritten as

P(DSL is ranked kth)

m�1 k�12p P (Z 1 0)N �a ,[ ]truek�1 np(3p�1)

m�k2P (Z ! 0) .N �a ,[ ]true
np(3p�1)

Let

2P p P (Z ! 0) .true N �a ,[ ]true
np(3p�1)

In other words, is the probability that the DSL has anPtrue

estimated effect higher than that of a random marker.
Then,

m�1 k�1 m�kP(DSL is ranked kth) p (1 � P ) Ptrue truek�1

p binom(m � 1, k � 1, 1 � P ) .true

Then, we have

Var (rank for DSL) p mP (1 � P ) .true true

Hence, the value of (which depends on the geneticPtrue

effect at the true disease locus) and the number of markers
tested determine the distribution over the possible rank-
ings for the DSL after the screening step (fig. A1). Unfor-
tunately, we do not know the value of . However, wePtrue

can assume a distribution over the values of . In thisPtrue

case, selecting the top K SNPs (where K is a small number—
say, 10–20) corresponds to the assumption that fol-Ptrue

lows a Dirac delta-distribution, with the entire probability
mass at a value very close to 1 (see fig. A1). The simple
(unweighted) Bonferroni correction corresponds to the as-
sumption that . The method we propose hereP ∼ U(0,1)true

falls in between these two extremes. Namely, we assume
that has an exponential distribution. In this case, thePtrue
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Figure A1. Distribution of the rank for the DSL as a function of its ( )P m p 10,000true

probability that a DSL is ranked kth will decrease expo-
nentially as well. Indeed,

P(DSL is ranked kth)

1

p P(true marker is ranked kthFP )f(P )dP� true true true

0

1

m�1 k�1 m�kp (1 � P ) P f(P )dP� true true true truek�1
0

1

k�1 m�k lPm�1 truep l (1 � P ) P e dP ,� true true truek�1
0

with . This function is exponentially decreasing withl 1 0
increasing k. Roughly, one can think of the integral above
as a weighted average of with weightslPtruee P(DSL is

. For each value of k, there is only a smallranked kthFP )true

range of values for that ensure a positive value for thePtrue

weights, with the range of values becoming larger as k
increases (as shown in fig. A1 by the increasing overlap
among the distributions as k increases). This means that,
for small values of k, the integral is proportional to lPe
with P close to 1, whereas, for large values of k, the integral
is proportional to with a small P. This shows the ex-lPe
ponential decrease of the rank distribution with increasing
rank.

Web Resource

The URL for data presented herein is as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi
.nlm.nih.gov/Omim/ (for height)

References

1. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C,
Henning AK, SanGiovanni JP, Mane SM, Mayne ST, et al
(2005) Complement factor H polymorphism in age-related
macular degeneration. Science 308:385–389

2. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly
MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, et al
(2006) A genome-wide association study identifies IL23R as
an inflammatory bowel disease gene. Science 314:1461–1463

3. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda
M, West K, Kashuk C, Akyol M, Perz S, et al (2006) A common
genetic variant in the NOS1 regulator NOS1AP modulates
cardiac repolarization. Nat Genet 38:644–651

4. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin
P, Vincent D, Belisle A, Hadjadj S, et al (2007) A genome-wide
association study identifies novel risk loci for type 2 diabetes.
Nature 445:881–885

5. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig
T, Wichmann HE, Meitinger T, Hunter D, Hu FB, et al (2006)
A common genetic variant is associated with adult and child-
hood obesity. Science 312:279–283

6. Van Steen K, McQueen MB, Herbert A, Raby B, Lyon H, De-
meo DL, Murphy A, Su J, Datta S, Rosenow C, et al (2005)
Genomic screening and replication using the same data set
in family-based association testing. Nat Genet 37:683–691

7. Lange C, DeMeo D, Silverman EK, Weiss ST, Laird NM (2003)
Using the noninformative families in family-based associa-
tion tests: a powerful new testing strategy. Am J Hum Genet
73:801–811

8. Roeder K, Bacanu SA, Wasserman L, Devlin B (2006) Using
linkage genome scans to improve power of association in
genome scans. Am J Hum Genet 78:243–252

9. Wasserman L, Roeder K (2006) Weighted hypothesis testing.
(http://arxiv.org/abs/math.ST/0604172) (accessed July 5,
2007)

10. Balding DJ, Nichols RA (1995) A method for quantifying dif-
ferentiation between populations at multi-allelic loci and its
implications for investigating identity and paternity. Gene-
tica 96:3–12

11. Pritchard JK, Donnelly P (2001) Case-control studies of as-



614 The American Journal of Human Genetics Volume 81 September 2007 www.ajhg.org

sociation in structured or admixed populations. Theor Popul
Biol 60:227–237

12. Nicholson G, Smith AV, Jónsson F, Gústafsson Ó, Stefánsson
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